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1 Random walks on graphs

We shall consider a graph G with n vertices that is regular of degree d. (We
shall allow loops and multiple edges.) We can define a random walk on G by
starting at a vertex x = x0, and at each step moving from the current vertex
xn to one of its neighbours—each chosen with probability 1

d
.

The adjacency matrix A of G is defined by

Axy =

{
1 xy is an edge of G
0 otherwise

(or more generally Axy is defined to be the number of edges from x to y).
The transition matrix T is 1

d
A. Observe that Txy is the probability that

you go to y if you are at x.
The useful thing about T is that (T k)xy is the probability that, after k

steps, you are at y if you start at x. (Easy inductive proof.)
T is a symmetric matrix, so there is an orthonormal basis of eigenvectors

v0, v1, . . . , vn−1 with eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λn−1.

Lemma 1. With T defined as above, λ0 = 1, and λ1 < 1 if G is connected.
Furthermore, λn−1 ≥ −1, with equality iff G is bipartite.

Proof. Let φ : V (G) → R be the constant function taking the value 1 every-
where. Then

Tφ(x) =
∑

y∈V (G)

Txyφ(y) =
1

d

∑
y∈N(x)

φ(y) = 1 = φ(x)

(as G is d-regular). So φ is an eigenvector with eigenvalue 1.
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Now we show that |λi| ≤ 1 for every i. Write ‖f‖1 for
∑

x |f(x)|. Then,
for any φ : V (G) → R,

‖Tφ‖1 =
∑

x∈V (G)

∣∣∣∣1d ∑
y∈N(x)

φ(y)

∣∣∣∣
≤ 1

d

∑
x∈V (G)

∑
y∈N(x)

|φ(y)|

=
1

d

∑
y∈V (G)

|φ(y)|
∑

x∈N(y)

1

=
∑

y∈V (G)

|φ(y)|

= ‖φ‖1.

Hence if Tφ = λφ then |λ| ≤ 1.
Now, let us suppose that ‖Tφ‖1 = ‖φ‖1, so that equality holds in the

inequality above. Then
∣∣∑

y∈N(x) φ(y)
∣∣ =

∑
y∈N(x) |φ(y)| for every x, so no x

has neighbours y and z with φ(y) > 0 and φ(z) < 0.
Suppose that φ is an eigenvector and φ(x) = 0. Then

Tφ(x) =
1

d

∑
y∈N(x)

φ(y) = 0,

so φ(y) = 0 for all y ∈ N(x). If G is connected then φ vanishes everywhere,
a contradiction. So if φ is an eigenvector with eigenvalue ±1 then φ(x) is
never 0. If the eigenvalue is 1 then the sign of φ(y) is the same as that of
φ(x) for all y ∈ N(x). Hence φ has constant sign, so 〈φ,1〉 =

∑
x φ(x).1 6= 0.

So if φ is one of the vi then φ = v0.
If the eigenvalue is −1, then φ(y) has opposite sign to φ(x) for every

y ∈ N(x). So sign φ defines a bipartition of G.

Lemma 2. Let G be a graph with n vertices, regular of degree d. Suppose
that λ = max{|λ1|, |λn−1|} < 1. Then the random walk on G converges to
the uniform distribution.

Proof. Let v0, v1, . . ., vn be an orthonormal basis of eigenvectors of the tran-
sition matrix T (ordered as before). Then we can write the initial distribution
p0 of the random walk as µ0v0 + µ1v1 + · · · + µn−1vn−1 for some scalars µ0,
µ1, . . . , µn−1.

We know that µ0v0 is the uniform distribution by looking at the ex-
pression

∑
x

∑n−1
i=0 µivi(x) =

∑
x p0(x) = 1. But 〈vi, v0〉 = 0 for all i > 0,
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i.e.
∑

x vi(x) = 0 for all i > 0, so this is also
∑

x µ0v0(x), so µ0v0 is a constant
function summing to 1.

The distribution pk after k steps is then

T kp0 = µ0v0 + µ1λ
k
1v1 + · · ·+ µn−1λ

k
n−1vn−1.

So

‖T kp0 − µ0v0‖2
2 =

n−1∑
i=1

µ2
i λ

2k
i ≤ λ2k

n−1∑
i=1

µ2
i ≤ λ2k

since
∑n−1

i=0 µ2
i = ‖p0‖2

2 ≤ 1. Hence ‖T kp0 − µ0v0‖1 ≤ λk
√

n.
But λk → 0, so pk converges to the uniform distribution in `1 (or in `2 or

in any other norm).

Definition. The total variation distance between two probability distribu-
tions µ1 and µ2 on a set X (which we will take to be finite) is given by
maxA⊂X{|µ1(A)− µ2(A)|}. It is easy to see that the best A to choose is
either {x : µ1({x}) ≥ µ2({x})} or {x : µ1({x}) < µ2({x})}. But since∑

µ1({x}) =
∑

µ2({x}), these give the same answer, so both must give
1
2
‖µ1 − µ2‖1.

Example. The discrete cube Qn has vertex set P[n], where [n] = {1, 2, . . . , n}.
Two sets A, B ⊂ [n] are joined by an edge if |A∆B| = 1, i.e. if A and B
differ by exactly one element. Equivalently, it is the set of 01-sequences of
length n, with (ε1, ε2, . . . , εn) joined to (ε′1, ε

′
2, . . . , ε′n) iff εi = ε′i for all but

one value of i.
We shall write down a complete system of eigenvectors.

Definition. Let B ⊂ [n]. The Walsh function WB : P[n] → R is defined by
WB(A) = (−1)|A∩B|, e.g. W∅(A) = 1 for every A ⊂ [n] and W[n](A) = (−1)|A|.

Claim 1. If B 6= B′ then 〈WB, WB′〉 = 0.

Proof. For i ∈ B∆B′, we have∑
A⊂[n]

WB(A)WB′(A) =
∑

A⊂[n]−{i}

(
WB(A)WB′(A)+WB (A ∪ {i}) WB (A ∪ {i})

)
.

If i ∈ B − B′ then WB(A) = −WB (A ∪ {i}) and WB′(A) = WB′ (A ∪ {i}),
so the big bracket is zero for every A. Similarly if i ∈ B′ −B.

Claim 2. Each WB is an eigenvector of T with eigenvalue 1− 2|B|
n

.
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Proof. We have

TWB(A) =
1

n

∑
C⊂[n]

|A∆C|=1

WB(C)

=
1

n

n∑
i=1

WB (A∆{i})

=
1

n

∑
i∈B

WB (A∆{i}) +
1

n

∑
i6∈B

WB (A∆{i})

=
1

n
WB(A)

(
− |B|+ n− |B|

)
=

(
1− 2|B|

n

)
WB(A).

This proves that λ1 = 1 − 2
n

and λn−1 = −1. We can deal with the
fact that the graph is bipartite by staying still with probability 1

2
. Then the

transition matrix T changes to 1
2
(T + I), so then the eigenvalue λ changes to

λ+1
2

.
We can do better as follows. If we start at a single vertex—wlog ∅—then

the initial distribution is δ∅. Since ‖WB‖2 = 2
n
2 , we have

δ∅ = 2−n
∑

B⊂[n]

〈δ∅, WB〉WB = 2−n
∑

B⊂[n]

WB.

If we use the transition matrix T = 1
2
(I + 1

n
A) then WB has eigenvalue

1− |B|
n

. Then T kδ∅ = 2−n
∑

B⊂[n]

(
1− |B|

n

)
WB. So

‖T kδ∅ − 2−nW∅‖2
2 = 2−2n

∑
B⊂[n]
B 6=∅

(
1− |B|

n

)2k

‖WB‖2
2

= 2−n

n∑
r=1

(
1− r

n

)2k
(

n

r

)
≤ 2−n

n∑
r=1

e
−2kr

n nr

= 2−n

n∑
r=1

(
elog n− 2k

n

)r

.
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If k = Cn log n with C ≥ 1 then this is at most 2−n
∑n

r=1 e−Cr log n ≤ 2−n2n−c,

so ‖T kδ∅−2−nW∅‖2 ≤ 2
1
2 2−

n
2 n−

C
2 , and so ‖T kδ∅−2−nW∅‖1 ≤ 2

1
2 n−

C
2 . Hence

the mixing time is . n log n (in fact ≈).

Example. For convenience, let N be odd and consider the graph on ZN , the
integers modulo N , with x joined to x ± 1. Let ω = e

2πi
N and for each r let

fr(x) = ωrx. Then

(Tfr)(x) =
1

2
fr(x + 1) +

1

2
fr(x− 1)

=
1

2
(ωr(x+1) + ωr(x−1))

=
1

2
(ωr + ω−r)ωrx = cos

2πr

N
.fr(x).

So fr is an eigenvector with eigenvalue cos 2πr
N

. So is f−r, since cos is even. It
follows that x 7→ cos 2πrx

N
and x 7→ sin 2πrx

N
are eigenvectors with eigenvalue

cos 2πr
N

. So λ1 = cos 2π
N

and λN−1 = cos 2π (N+1)/2
N

= cos
(
π + π

N

)
so the

spectral gap is ∼ N−2. So the mixing time is . N2 log N .

Lemma 3. Let G be a d-regular graph. Then

λ1 = sup

{
〈Tf, f〉
n var f

: f 6≡ 0,
∑

x

f(x) = 0

}
.

Proof. Let v0, v1, . . . , vn−1 be an orthonormal basis of eigenvectors with
eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λn−1. Then, as

∑
x∈V (G) f(x) = 0, we can

expand f as f = µ1v1 + · · · + µn−1vn−1. Then 〈f, Tf〉 =
∑n−1

i=1 λiµ
2
i and

n var f =
∑n−1

i=1 µ2
i (= ‖f‖2

2). But
∑n−1

i=1 λiµ
2
i ≤ λ1

∑n−1
i=1 µ2

i with equality if
µ1 = 1 and the other µi are zero.

Now

〈f, Tf〉 =
∑

x

f(x)Tf(x)

=
1

d

∑
x

f(x)
∑

y∈N(x)

f(y)

=
1

d

∑
(x,y)
x∼y

f(x)f(y)
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=
1

2d

∑
(x,y)
x∼y

(
f(x)2 + f(y)2 − (f(x)− f(y))2)

= n var f − 1

2d

∑
(x,y)
x∼y

(f(x)− f(y))2 .

Also, var f = 1
2n2

∑
(x,y) (f(x)− f(y))2 (exercise).

If we denote by G-var f the quantity 1
2dn

∑
(x,y):x∼y (f(x)− f(y))2, this

shows that the spectral gap is at least δ if G-var f ≥ δ var f for every f such
that

∑
x f(x) = 0 and hence for all f .

So we have shown:

Lemma 4. Let G be a d-regular graph. Then the spectral gap, 1 − λ1, is
given by

1− λ1 = inf
f

G-var f

var f
,

where the infimum is taken over all non-constant f : V (G) → R.

Proposition 5 (Discrete Poincaré Inequality (Diaconis, Stroock)).
Let G be a d-regular graph with n vertices. Suppose that there is a system P
of directed paths with the following properties:

• for every pair (x, y) there is a path Pxy ∈ P from x to y of length at
most m; and

• no (directed) edge appears in more than t of the paths.

Then the spectral gap is at least n
mtd

.

Proof. Let f : V (G) → R be any function. Then (writing e− for the start-
vertex and e+ for the end-vertex of an edge e)

var f =
1

2n2

∑
(x,y)

(f(x)− f(y))2

=
1

2n2

∑
(x,y)

( ∑
e∈Pxy

(f(e+)− f(e−))

)2

≤ 1

2n2

∑
(x,y)

|Pxy|
∑

e∈Pxy

(f(e+)− f(e−))2 (Cauchy-Schwarz)

≤ m

2n2

∑
e

∑
Pxy3e

(f(e+)− f(e−))2
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≤ mtd

n
· 1

2dn

∑
e

(f(e+)− f(e−))2

=
mtd

n
G-var f.

Example. Let G be the discrete n-dimensional cube. Given two vertices A
and B (which are subsets of [n]), define a path A = A0, A1, . . . , An = B as
follows:

• if k ∈ B then Ak = Ak−1 ∪ {k};

• if k 6∈ B then Ak = Ak−1 − {k}.

Now let CD be an edge of the graph G and suppose that C and D differ
only in the kth place. If CD belongs to the path PAB then

A ∩ {k + 1, k + 2, . . . , n} = D ∩ {k + 1, k + 2, . . . , n}

and
B ∩ {1, 2, . . . , k} = D ∩ {1, 2, . . . , k}.

Hence the number of pairs (A, B) with CD ∈ PAB is at most 2k2n−k = 2n,
i.e. we can take t = 2n.

So the spectral gap is at least 2n

n2nn
= 1

n2 . Note that this is a good estimate
but is not best possible.

Alternative way to see that t = 2n: note that, given CD, the pair (A, B)
is determined by A ∩ {1, 2, . . . , k} and B ∩ {k + 1, k + 2, . . . , n}. So we can
define a surjection from P[n] to {(A, B) : CD ∈ PAB} by

E 7→
((

E ∩ [1, k]
)
∪
(
D ∩ [k + 1, n]

)
,
(
D ∩ [1, k]

)
∪
(
E ∩ [k + 1, n]

))
(where for integers a and b, [a, b] denotes the set {a, a + 1, . . . , b}). So
t = |V (G)|.

Approximating the permanent

Let A be an n × n matrix. The permanent of A is
∑

π∈Sn

∏n
i=1 Aiπ(i),

i.e. “det A without the signs”.
We shall restrict attention to 01-matrices. There is a natural correspon-

dence between these and bipartite graphs, with an edge from i to j if Aij = 1.
The product

∏n
i=1 Aiπ(i) = 1 iff all the edges iπ(i) belong to the graph G,

so the permanent of A is the number of perfect matchings in G.
Two ideas lie behind the proof to follow:
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1. If you can efficiently generate a random matching in the graph (from
the uniform distribution) then you can do approximate counting with
high probability.

2. To do (1), devise a random walk in the space of all matchings and show
that it mixes rapidly.

We shall restrict attention to dense bipartite graphs—i.e. ones where the
minimum degree is at least n

2
. (It is still #P -hard to calculate the number

of matchings exactly.)

Broder’s Algorithm

Let G be a dense bipartite graph with n vertices on each side, letM be the set
of perfect matchings in G and let M′ be the set of near-perfect matchings—
i.e. those matchings with exactly one vertex unmatched on each side. Let
N = M∪M′.

We define a random walk on N as follows: given M ∈ N , choose an edge
e ∈ G, e = uv, uniformly at random, and do the following:

(i) if M ∈M and e ∈ M then remove e;

(ii) if M ∈M′ and u, v are unmatched in M then add e;

(iii) if M ∈M′, u is unmatched in M , and v is matched to w then replace
the edge wv by e;

(iv) similarly if u is matched and v is not;

(v) otherwise, do nothing.

We can define a corresponding graph onN (with several loops at each vertex)
which is regular of degree |E(G)|.

Defining a system of paths

First we show how to get from M ′ ∈M′ to some M ∈M. Let u and v be the
unmatched vertices in M ′. If uv ∈ E(G) then let M = M ′∪{uv}. Otherwise,
u must have a neighbour y and v a neighbour x such that xy ∈ M ′. Pick such
a pair and move to a matching M in two steps as follows: first, replaced xy
by uy and then add in the edge xv. From this matching M , we can recover
M ′ if we are told what u and v were, so at most n2 of the M ′ ∈ M′ end up
at M . This also shows that |M′| ≤ n2|M|.
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Now we shall see how to get from a matching M1 to a matching M2. First,
put an arbitrary total ordering on the set of all cycles in G, and for each cycle
pick a “start” vertex. The symmetric difference of M1 and M2 is a disjoint
union of cycles. For each of these cycles in turn, we do the following. First,
remove the edge of M1 incident to the start-vertex. Next, keep replacing
edges of M1 by edges of M2 wherever possible. When all edges belong to M2,
add in the M2-edge incident to the start-vertex.

Bounding the bottleneck parameter

How many pairs (M1, M2) use any given transition MN in the path just
defined? We cannot hope to say, but we can try to bound the ratio of this
to |N |. We shall do that by showing that the extra information needed to
recover (M1, M2) if you know MN is in 1-1 correspondence with a subset of
N .

Suppose that the transition MN lies in the path from M1 to M2, where
M and N are near-matchings, and M1 and M2 are perfect matchings. If we
know MN and M1∆M2 (the union of the cycles included in the path from
M1 to M2), then we can certainly determine M1 and M2. We can determine
M1∆M2 from M1∆M2∆(M ∪N). However, this will not be a near-matching.
But it can be made into a near-matching by the removal of one edge, and we
can reconstruct the union of cycles from it with this edge removed. Similar
arguments work for the other kinds of transition so the number of paths using
MN is at most |N | for any transition MN .

Since any matching in M is connected to at most n2 near-matchings by
the paths discussed earlier, we can get from any point in N to any other with
each edge used at most 2n4|N | times. The paths have length at most 2n and
the degree of each vertex in the graph on N is at most n2. So the spectral
gap is at most |N |

2n.n2.2n4|N | = 1
4n7 . So the walk mixes in polynomial time.

Random sampling  approximate counting

Suppose we know how to sample uniformly at random from N (G). We can
use this to estimate |M(G)|

/
|N (G ∪ {e})| as follows.

Sample repeatedly from N (G ∪ {e}) and count how many times you get
an element of M(G). For this to work, it is important that |N (G ∪ {e})|
is not too much larger than |M(G)|. Any matching in G ∪ {e} is either a
matching in G or the union of {e} and a near-matching in G. So

|M(G ∪ {e})| ≤ |N (G)| ≤ (n2 + 1)|M(G)|
and so

|N (G ∪ {e})| ≤ (n2 + 1)2|M(G)|.
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By the same argument we can estimate |N (G∪{e})|
/
|N (G∪{e, e′})| and

so on. Since we know |N (Kn,n)| exactly, the size of M(G) can be calculated
from at most n2 ratios.

We have to make sure that the sum of the error probabilities is small,
and that the product of the errors in the ratio estimates is small. This can
easily be achieved in polynomial time.

Coupling

This is another technique for proving rapid mixing that works for some very
symmetric walks.

Example. The cube. Think of it as 01-sequences of length n. Define two
random walks x0, x1, x2, . . . and y0, y1, y2, . . . as follows. Let x0 be a fixed
vertex and y0 a random vertex. At time t, choose uniformly at random from
{1, 2, . . . , n} and randomly decide whether to take (xt)i and (yt)i to be 0 or 1
(but making the same decision for both), and leave the other coordinates the
same as they were for xt−1 and yt−1. What do we know about these walks?

(i) Individually, the walks (xt) and (yt) are the usual walks with holding
probability 1

2
;

(ii) yt is uniformly distributed for all t;

(iii) if each i has been chosen then xt = yt.

The probability that some i has not been chosen by time t is at most
n(1− 1/n)t ≤ elog n−t/n, which is small for t � n log n. So the mixing time
is roughly n log n.

2 Quasirandom graphs

If G is a graph and x ∈ V (G) then we shall write Nx for the set of neighbours
of x.

Theorem 6. Let G be an N
2
-regular bipartite graph with vertex sets X and

Y of size N . Then the following statements are equivalent, in the sense that
ci → 0 =⇒ cj → 0.

(i)
∑

x,x′∈X |Nx ∩Nx′|2 ≤ N4

16
+ c1N

4.

(ii) The number of labelled 4-cycles (x, y, x′, y′) in G with x, x′ ∈ X and
y, y′ ∈ Y is at most N4

16
+ c1N

4.
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(iii)
∣∣|Nx ∩Nx′| − N

4

∣∣ ≤ c2N for all but at most c2N
2 pairs (x, x′) ∈ X2.

(iv) For every A ⊂ X and B ⊂ Y , the number of edges from A to B
differs from 1

2
|A||B| by at most c3N

2.

Proof. (i) ⇐⇒ (ii). This follows from the fact that |Nx∩Nx′|2 is the number
of pairs (y, y′) ∈ Y 2 such that (x, y, x′, y′) is a labelled 4-cycle of the required
kind.

(i) =⇒ (iii). Assume (i) and consider the sum∑
x,x′∈X

(
|Nx ∩Nx′| −

N

4

)2

=
∑

x,x′∈X

|Nx ∩Nx′|2 −
N

2

∑
x,x′∈X

|Nx ∩Nx′|+
N4

16
.

Now ∑
x,x′∈X

|Nx ∩Nx′| =
∑
y∈Y

|Ny|2 ≥ N−1

(∑
y∈Y

|Ny|
)2

=
N3

4
.

Hence the original sum is at most N4

16
+ c1N

4 − N4

8
+ N4

16
= c1N

4. So∣∣|Nx ∩Nx′| − N
4

∣∣ > c
1
3
1 N for at most c

1
3
1 N2 pairs (x, x′).

(iii) =⇒ (i). If (iii) holds then∑
x,x′∈X

|Nx ∩Nx′|2 ≤ N2

(
N

4
+ c2N

)2

+ c2N
2.N2

=
N4

16
+

(
1

2
c2 + c2

2 + c2

)
N4.

(i) =⇒ (iv). Let

G(x, y) =

{
1 xy ∈ E(G)
0 otherwise

and let

f(x, y) = G(x, y)− 1

2
=

{
1
2

xy ∈ E(G)
−1

2
otherwise

.

Then the left-hand side of (i) is∑
x,x′∈X

∑
y,y′∈Y

G(x, y)G(x, y′)G(x′, y)G(x′, y′)

=
∑

x,x′∈X

∑
y,y′∈Y

(
1

2
+ f(x, y)

)(
1

2
+ f(x, y′)

)(
1

2
+ f(x′, y)

)(
1

2
+ f(x′, y′)

)
=

N4

16
+
∑

x,x′∈X

∑
y,y′∈Y

f(x, y)f(x, y′)f(x′, y)f(x′, y′).
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All the other 14 terms are zero. For example,∑
x,x′∈X

∑
y,y′∈Y

1

2
f(x, y′)f(x′, y)f(x′, y′) =

1

2

∑
x′∈X

∑
y,y′∈Y

f(x′, y)f(x′, y′)
∑
x∈X

f(x, y′)

= 0

as
∑

x∈X f(x, y′) = 0 for all y′ ∈ Y .
So now let us assume that (iv) is false, and obtain a lower bound for∑

x,x′∈X

∑
y,y′∈Y f(x, y)f(x, y′)f(x′, y)f(x′, y′). It is

∑
x,x′∈X

(∑
y∈Y

f(x, y)f(x′, y)

)2

≥
∑

x,x′∈A

(∑
y∈Y

f(x, y)f(x′, y)

)2

=
∑

x,x′∈A

∑
y,y′∈Y

f(x, y)f(x, y′)f(x′, y)f(x′, y′)

=
∑

y,y′∈Y

(∑
x∈A

f(x, y)f(x, y′)

)2

≥
∑

y,y′∈B

(∑
x∈A

f(x, y)f(x, y′)

)2

≥ |B|−2

( ∑
y,y′∈B

∑
x∈A

f(x, y)f(x, y′)

)2

= |B|−2

(∑
x∈A

(∑
y∈B

f(x, y)

)2
)2

≥ |B|−2

(
|A|−1

(∑
x∈A

∑
y∈B

f(x, y)

)2
)2

= |A|−2|B|−2

(∑
x∈A

∑
y∈B

f(x, y)

)4

= |A|−2|B|−2

(
|E(A, B)| − 1

2
|A||B|

)4

≥ |A|−2|B|−2(c3N
2)4

≥ c4
3N

4.

Hence ∑
x,x′∈X

|Nx ∩Nx′|2 ≥
N4

16
+ c4

3N
4.

12



(iv) =⇒ (i). Choose an edge xy randomly from G and consider the number
of edges from Ny ⊂ X to Nx ⊂ Y , assuming

∑
x,x′∈X |Nx∩Nx′|2 > N4

16
+c1N

4.
On average it is

2

N2

∑
xy∈E(G)

∑
y′∈Nx

x′∈Ny

1x′y′∈E(G) =
2

N2

∑
x,x′∈X

|Nx ∩Nx′|2

>
N2

8
+ 2c1N

2

=
1

2
|Nx||Ny|+ 2c1N

2.

Hence there exist x and y such that this is true.

Lemma 7. Let G be a bipartite graph with vertex sets X and Y of size N ,
with N even. Suppose that

∣∣deg(x)− N
2

∣∣ ≤ cN for all but at most cN vertices
x ∈ X ∪ Y . Then there is an N

2
-regular graph H with |E(H)∆E(G)| ≤ 21cN2.

Proof. We can remove fewer than 2cN2 + cN2 = 3cN2 edges to obtain a
graph with all degrees at most N

2
and having at least

N2

2
− 2cN2 − cN2 − 3cN2 =

N2

2
− 6cN2

edges. Now add edges for as long as possible while keeping the maximum
degree at most N

2
.

If we can no longer do this, then every vertex in X of degree less than N
2

is joined to every vertex in Y of degree less than N
2
. Pick x ∈ X and y ∈ Y ,

each of degree less than N
2
. Choose z ∈ X not joined to y. Since deg z = N

2

(as it is not joined to y) and deg x < N
2
, we can find w joined to z but not

x. Now replace the edge zw by the edges xw and zy. The degrees of w and
z stay the same, while those of x and y go up by 1. We have only changed
3 edges and increased the total number of edges by 1. So at most 18cN2

further changes are necessary.

Theorem 8. Let G be an N
2
-regular graph with N vertices. Then the follow-

ing statements are equivalent:

(i)
∑

x,x′∈X |Nx ∩Nx′|2 ≤ N4

16
+ c1N

4.

(ii) The number of labelled 4-cycles is at most N4

16
+ c1N

4.

(iii)
∣∣|Nx ∩Nx′| − N

4

∣∣ ≤ c2N for all but at most c2N
2 pairs (x, x′).

(iv)
∣∣E(A, B)− 1

2
|A||B|

∣∣ ≤ c3N
2 for all A, B ⊂ X.

13



(v)
∣∣E(A, A)− 1

2
|A|2

∣∣ ≤ c4N
2 for every A ⊂ X.

(vi) The second-largest eigenvalue of the adjacency matrix is at most
c5N .

(vii) Let H be any fixed graph with k vertices and let φ : V (H) → V (G)
be a random function. Let E be the event that φ(x)φ(y) ∈ E(G) pre-

cisely when xy ∈ E(H). Then
∣∣∣P(E)− 2−(k

2)
∣∣∣ ≤ c6.

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) by Theorem 6. (Make G into a
bipartite graph by doubling up the vertex set.) Trivially (iv) =⇒ (v) and
(vii) =⇒ (ii).

(v) =⇒ (iv). Let A, B be such that
∣∣e(A, B)− 1

2
|A||B|

∣∣ > c3N
2. Note that

2e(A, B) = e(A∪B, A∪B)−e(A−B, A−B)−e(B−A, B−A)+e(A∩B, A∩B).

Also,

|A||B| = 1

2
|A ∪B|2 − 1

2
|A−B|2 − 1

2
|B − A|2 +

1

2
|A ∩B|2.

Hence there is some set C such that
∣∣e(C, C)− 1

2
|C|2

∣∣ ≥ c3N2

2
.

(i) ⇐⇒ (vi). Suppose we write

G(x, y) =
N−1∑
i=0

λiui(x)ui(y)

where u0,u1, . . . , uN−1 is an orthonormal basis of eigenvectors (of the ad-
jacency matrix G) and λ0, λ1, . . ., λN−1 are the eigenvalues with λ0 = N

2
.

Then ∑
x,y∈V (G)

G(x, y) =
∑

x,y∈V (G)

G(x, y)2

=
∑

x,y∈V (G)

(N−1∑
i=0

λiui(x)ui(y)

)2

=
N−1∑
i=0

N−1∑
j=0

λiλj

∑
x,y∈V (G)

ui(x)ui(y)uj(x)uj(y)

=
N−1∑
i=0

λ2
i

14



(as
∑

x∈V (G) ui(x)uj(x) = δij). Also,∑
x,y,z,w∈V (G)

G(x, y)G(y, z)G(z, w)G(w, x)

=
∑

0≤i,j,k,l≤N−1

λiλjλkλl

∑
x,y,z,w∈G(v)

ui(x)ui(y)uj(y)uj(z)uk(z)uk(w)ul(w)ul(x)

=
∑

0≤i,j,k,l≤N−1

λiλjλkλl〈ui, ul〉〈ui, uj〉〈uj, uk〉〈uk, ul〉

=
N−1∑
i=0

λ4
i ,

i.e. ∑
x,x′∈V (G)

|Nx ∩Nx′|2 =
N−1∑
i=0

λ4
i .

If |λi| ≤ c5N for every i > 0 then

N−1∑
i=1

λ4
i ≤ (c5N)2

N−1∑
i=0

λ2
i = c2

5N
2N2

2
=

1

2
c2
5N

4,

and so ∑
x,x′∈V (G)

|Nx ∩Nx′|2 ≤
N4

16
+

1

2
c2
5N

4.

Conversely, if there is some i > 0 for which |λi| > c5N , then

∑
x,x′∈V (G)

|Nx ∩Nx′|2 =
N−1∑
i=0

λ4
i >

N4

16
+ c4

5N
4.

(iv) ⇐⇒ (vii). We shall, in fact, prove the following stronger result:

Let G be a k-partite graph with vertex sets X1, X2, . . . , Xk,
all of size N = 2kM , such that all the bipartite graphs spanned
by (Xi, Xj), i 6= j, are N

2
-regular and have the property that,

whenever A ⊂ Xi and B ⊂ Xj, then
∣∣e(A, B)− 1

2
|A||B|

∣∣ ≤ c3N
2.

Let H be a graph with vertex set {1, 2, . . . , k} and let xi ∈ Xi be
chosen randomly. Then∣∣∣P [xixj ∈ E(G) ⇐⇒ ij ∈ E(H)]− 2−(k

2)
∣∣∣ ≤ c6

for some c6 that (depends on k and) tends to 0 as c3 → 0.
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Let E be the event [xixj ∈ E(G) ⇐⇒ ij ∈ E(H)]. Pick xi randomly.
Then a necessary condition for E is that xi ∈ Nx1 ∩Xi whenever 1i ∈ E(H),
and xi ∈ Xi −Nx1 whenever 1i 6∈ E(H). Let

Ai =

{
Xi ∩Nx1 1i ∈ E(H)
Xi −Nx1 1i 6∈ E(H)

(i = 2, 3, . . . , k).

Then the probability that xi ∈ Ai, i = 2, 3, . . . , k, is 2−(k−1).
It remains to discuss P(E|xi ∈ Ai, i = 2, 3, . . . , k). First, let us show that

the graph spanned by Ai and Aj is approximately regular. If there are cN
2

vertices in Ai of degree greater than N
4

+ cN
2

in Aj then let B be the set of
these bad vertices. We have

e(B, Aj) >

(
N

4
+ c

N

2

)
|B| = 1

2
|B||Aj|+ c

N

2
|B| ≥ 1

2
|B||Aj|+

c2

4
N2,

contradicting our assumption if c ≥ 2
√

c3. We may proceed similarly if cN
2

have degree less than N
4
− cN

2
.

So, we can make the graph spanned by Ai and Aj become N
4
-regular after

changing at most 84
√

c3

(
N
2

)2
edges. In the modified graph, if A ⊂ Ai and

B ⊂ Aj then∣∣∣∣e(A, B)− 1

2
|A||B|

∣∣∣∣ ≤ (c3 + 21
√

c3) N2 ≤ 100
√

c3

(
N

2

)2

(if
√

c3 ≥ c3).
By induction, the probability that xixj is an edge of the modified graph

precisely when ij is an edge of H given that xi ∈ Ai for i = 2, 3, . . . , k

differs from 2−((k−1)
2 ) by at most c, where c → 0 as 100

√
c3 → 0. The

probability that some xixj is a modified edge is at most 84
√

c3

(
k−1
2

)
→ 0 so

P(E)− 2−(k−1)2−(k−1
2 ) → 0 as c3 → 0.

Lemma 9. Let V and W be two n-dimensional real inner product spaces,
and let α : V → W be a linear map. Then α can be written

∑n−1
i=0 λivi ⊗ wi,

where (vi)
n−1
i=0 and (wi)

n−1
i=0 are orthonormal bases and v⊗w denotes the rank-1

map u 7→ 〈u, v〉w.

Proof. Pick v ∈ V and w ∈ W with ‖v‖ = ‖w‖ = 1 so as to maximize
〈αv, w〉. Clearly w = αv

‖αv‖ and then 〈αv, w〉 = ‖αv‖, so we are looking for v

that maximizes ‖αv‖
‖v‖ .

If we have this v and 〈u, v〉 = 0, then ‖v + δu‖2 = ‖v‖2 + o(δ) and
‖α(v + δu)‖2 = ‖αv‖2 +2δ〈αu, αv〉+ o(δ), so if 〈αv, αu〉 6= 0 we can choose a
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δ such that ‖α(v+δu)‖
‖v+δu‖ > ‖αv‖

‖v‖ , a contradiction. Therefore whenever 〈u, v〉 = 0

then also 〈αu, αv〉 = 0.
Set v0 = v, w0 = αv

‖αv‖ , V1 = 〈v0〉⊥ and W1 = 〈w0〉⊥. Then α : V1 → W1,

so, by induction, we can write the restriction of α to V1 as
∑n−1

i=1 λivi ⊗ wi,
where (vi)

n−1
i=1 and (wi)

n−1
i=1 are orthonormal and all the vi are orthogonal to

v0 and all the wi are orthogonal to w0.

It is not hard to show that if we apply this decomposition to the (bipartite)
adjacency matrix of a bipartite graph G with n+n vertices then the number
of labelled 4-cycles (x, y, x′, y′) with x, x′ ∈ X is

∑n−1
i=0 λ4

i . So, as with graphs,
if G is n

2
-regular, we can say that G is quasirandom iff for all i > 0, |λi| ≤ cn

for small c. Since λ0 = n
2

and v0 = w0 = 1√
n
(1, 1, . . . , 1), this says that∑

xy∈E(G) v(x)w(y) ≤ cn‖v‖2‖w‖2 whenever
∑

x∈X v(x) =
∑

y∈Y w(y) = 0.

Alternatively, G(x, y)− 1
2

has small correlation with any rank-1 matrix.

3 Szemerédi’s Regularity Lemma

Let G be a graph, and let A, B ⊂ V (G). The density of the pair (A, B) is
defined to be

d(A, B) =
|E(A, B)|
|A||B|

=
|{(x, y) ∈ A×B : xy ∈ E(G)}|

|A×B|
.

The pair is said to be ε-regular if, whenever A′ ⊂ A and B′ ⊂ B with
|A′| ≥ ε|A| and |B′| ≥ ε|B|, then |d(A′, B′)− d(A, B)| ≤ ε. A partition X1,
X2, . . . , Xk of V (G) is said to be ε-regular if∑{

|Xi||Xj|
n2

: (Xi, Xj) is not ε-regular

}
≤ ε.

Equivalently, the partition is ε-regular if for (x, y) ∈ V (G)2, the probability
that (x, y) belongs to an irregular pair is less than ε.

Theorem 10 (Szemerédi’s Regularity Lemma). Let ε > 0. Then there
exists K = K(ε) such that for every graph G, there is an ε-regular partition
of V (G) into at most K sets.

Definition. Given a partition X1 ∪X2 ∪ · · · ∪Xm of V (G), define the mean-
square density to be

m∑
i,j=1

|Xi||Xj|
n2

d(Xi, Xj)
2.

17



Since
∑m

i,j=1
|Xi||Xj |

n2 = 1 and 0 ≤ d(Xi, Xj) ≤ 1, we see that the mean-square
density lies between 0 and 1.

Lemma 11. Let X1, X2, . . . , Xm be a partition, and let Y1, Y2, . . . , YM

be a partition that refines X1, X2, . . . , Xm. Then the mean-square density
with respect to Y1, Y2, . . . , YM is at least as big as that with respect to
X1, X2, . . . , Xm.

Proof. Suppose each Xi is split into Xi1 ∪Xi2 ∪ · · · ∪Xiri
. Then

d(Xi, Xj)
2 =

(∑
s,t

|Xis||Xjt|d(Xis, Xjt)

|Xi||Xj|

)2

≤
(∑

s,t

|Xis||Xjt|
|Xi||Xj|

)(∑
s,t

|Xis||Xjt|
|Xi||Xj|

d(Xis, Xjt)
2

)
.

Hence
|Xi||Xj|

n2
d(Xi, Xj)

2 ≤
∑
s,t

|Xis||Xjt|
n2

d(Xis, Xjt)
2.

Remark. The same proof shows (or the lemma itself implies) a similar state-
ment for bipartite graphs: if G has vertex sets X and Y partitioned into
X1 ∪ X2 ∪ · · · ∪ Xr and Y1 ∪ Y2 ∪ · · · ∪ Ys, and Z1 ∪ Z2 ∪ · · · ∪ ZR and
W1 ∪W2 ∪ · · · ∪WS refine X1 ∪X2 ∪ · · · ∪Xr and Y1 ∪ Y2 ∪ · · · ∪ Ys respec-
tively, then

r∑
i=1

s∑
j=1

|Xi||Xj|
|X||Y |

d(Xi, Xj)
2 ≤

R∑
i=1

S∑
j=1

|Zi||Wj|
|X||Y |

d(Zi, Wj)
2.

Lemma 12. Let (X, Y ) be some pair of sets of vertices in a graph G, and
suppose that d(X, Y ) = α and (X, Y ) is not ε-regular. Then there are parti-
tions X = X1 ∪X2 and Y = Y1 ∪ Y2 such that

2∑
i,j=1

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2 ≥ α2 + ε4.
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Proof. By the non-ε-regularity, we can find X1 ⊂ X and Y1 ⊂ Y such that
|d(X1, Y1)−α| ≥ ε and |X1| ≥ ε|X|, |Y1| ≥ ε|Y |. Let u(Xi, Yi) = d(Xi, Yi)−α.
Then

ε4 ≤
2∑

i,j=1

|Xi||Yj|
|X||Y |

u(Xi, Yj)
2

=
2∑

i,j=1

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2 − 2α

2∑
i,j=1

|Xi||Yj|
|X||Y |

d(Xi, Yj) + α2

2∑
i,j=1

|Xi||Yj|
|X||Y |

=
2∑

i,j=1

|Xi||Yj|
|X||Y |

d(Xi, Yj)
2 − α2.

Lemma 13. Let G be a graph with N vertices, and let X1 ∪X2 ∪ · · · ∪Xm

be a partition of the vertices that is not ε-regular. Then there is a refinement
X11 ∪ · · · ∪X1r1 ∪X21 ∪ · · · ∪X2r2 ∪ · · · ∪Xm1 ∪ · · · ∪Xmrm such that each
ri is at most 22m and the mean-square density is bigger by at least ε5.

Proof. Let I = {(i, j) : (Xi, Xj) is not ε-regular}. Let α2 be the mean-square
density of G with respect to X1 ∪X2 ∪ · · · ∪Xm.

For each (i, j) ∈ I, Lemma 12 gives us partitions Xi = Aij
1 ∪ Aij

2 and
Xj = Bij

1 ∪Bij
2 such that

2∑
p,q=1

|Aij
p ||Bij

q |
|Xi||Xj|

d(Aij
p , Bij

q )2 ≥ d(Xi, Xj)
2 + ε4.

Now, for each i, let Xi1 ∪Xi2 ∪ · · · ∪Xiri
be a partition of Xi into at most

22m sets such that every Aij
1 , Aij

2 , Bij
1 and Bij

2 is a union of some of the Xih.
Then, by Lemma 11 (and the remark after it),

ri∑
p=1

rj∑
q=1

|Xip||Xjq|
|Xi||Xj|

d(Xip, Xjq)
2 ≥ d(Xi, Xj)

2 + ε4

for all (i, j) ∈ I. Multiplying both side by
|Xi||Xj |

N2 and summing over all (i, j),
splitting into a sum over I and a sum over Ic, we have

m∑
i,j=1

ri∑
p=1

rj∑
q=1

|Xip||Xjq|
N2

d(Xip, Xjq)
2 ≥

m∑
i,j=1

|Xi||Xj|
N2

d(Xi, Xj)
2 + ε4

∑
(i,j)∈I

|Xi||Xj|
N2

≥ α2 + ε5.
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Proof (of Theorem 10). Start with the trivial partition of V (G) into one set.
If it is ε-regular then we are done. If not, refine it into at most four sets in
such a way that mean-square density increases by ε5.

Continue this process. If at stage k we have a partition into m sets then
at stage k + 1 we have one into at most m.22m ≤ 22m

. Hence the process
must stop at an ε-regular partition after at most ε−5 steps. The number of

cells in the final partition is therefore at most 222·
··
2
}

2ε−5

.

Lemma 14. Let G be a graph, and let X, Y , Z ⊂ V (G). Suppose that
(X,Y ), (Y, Z) and (X, Z) are ε-regular and that d(X, Y ) = α, d(Y, Z) = β
and d(X, Z) = γ. Then the number of (x, y, z) ∈ X×Y ×Z forming triangles
in G is at least (1− 2ε)(α− ε)(β− ε)(γ− ε)|X||Y ||Z|, provided α, β, γ ≥ 2ε.

Proof. For each x ∈ X, write dY (x) for |Nx ∩ Y | and dZ(x) for |Nx ∩ Z|.
Then the number of x ∈ X such that dY (x) < (α − ε)|Y | is at most
ε|X| by ε-regularity of (X, Y ). Similarly, at most ε|X| of the x ∈ X have
dZ(x) < (β − ε)|Z|. If dY (x) ≥ (α − ε)|Y | and dZ(x) ≥ (β − ε)|Z| then, by
ε-regularity of (Y, Z), the number of edges between Nx ∩ Y and Nx ∩Z is at
least (γ − ε)(α− ε)(β − ε)|Y ||Z|. Summing over x ∈ X gives the result.

Theorem 15. For all ε > 0, there exists some δ > 0 with the following
property: given any graph G with n vertices and at most δn3 triangles, it is
possible to remove at most εn2 edges from G to make it triangle-free.

Proof. Let X1 ∪ X2 ∪ · · · ∪ XM be an ε
4
-regular partition with M ≤ M(ε).

From G, remove the edge xy if

(i) (x, y) ∈ Xi ×Xj with (Xi, Xj) not an ε
4
-regular pair; or

(ii) (x, y) ∈ Xi ×Xj with d(Xi, Xj) < ε
2
; or

(iii) x ∈ Xi with |Xi| ≤ εn
4M

.

The number of edges removed by (i) is at most
∑

(i,j)∈I |Xi||Xj| ≤ εn2

4
,

since the partition is ε
4
-regular. The number removed by (ii) is at most∑

i,j
ε
2
|Xi||Xj| = εn2

2
. The number removed by (iii) is at most Mn εn

4M
= εn2

4
.

Now suppose that, after these edges have been removed, there is still a
triangle (x, y, z) ∈ Xi×Xj ×Xk, say. Then the pairs (Xi, Xj), (Xj, Xk) and
(Xi, Xk) are all ε

4
-regular with density at least ε

2
(or we would have removed

these edges). Also |Xi|, |Xj|, |Xk| > εn
4M

. By Lemma 14, G contains at least(
1− ε

2

) (
ε
4

)3 ( εN
4M

)3
labelled triangles. So let δ = ε6

220M3 and the result is
proved.
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Theorem 16. Let δ > 0. Then there exists N0 such that if N ≥ N0 and
A ⊂ [N ]2 with |A| ≥ δN2 then A contains a triple of the form (x, y), (x+d, y),
(x, y + d) with d > 0.

Proof. The set A + A = {x + y : x,y ∈ A} is contained in [2N ]2 so there

must exists z that can be written as x + y in at least (δN2)2

(2N)2
= δ2N2

4
ways.

Pick such a z and write A′ = A ∩ (z − A) and δ′ = δ2

4
. Then A′ has size at

least δ′N2 and has the property that if A′ contains a triple of the form (x, y),
(x + d, y), (x, y + d) for d < 0 then so does z−A, and hence A contains such
a triple with d > 0. So, replacing A by A′ and δ by δ′, we may assume that
A contains no such triple for d 6= 0.

Now, we construct a tripartite graph as follows. The vertex sets are
X = [N ], Y = [N ] and Z = [2N ]. Think of X as the set of vertical lines
through A, Y as the set of horizontal lines, and Z as the set of diagonal lines
with x + y constant. Join x ∈ X to y ∈ Y iff (x, y) ∈ A, join x ∈ X to z ∈ Z
iff (x, z−x) ∈ A and join y ∈ Y to z ∈ Z iff (z− y, y) ∈ A (i.e. join two lines
iff their intersection is in A).

Suppose G contains a triangle (x, y, z). Then (x, y), (x, y + (z − x − y))
and (x+(z−x− y), y) are all in A, which is a contradiction unless x+ y = z
(which is the degenerate case where the three lines meet in a point). So G has
at most N2 = 1

64N
(4N)3 triangles. So for sufficiently large N , we can remove

at most δN2

2
edges from G to make it triangle-free. However, the degenerate

triangles are edge-disjoint (since any edge in G determines a unique point of
A) and there are at least δN2 of them. So we have a contradiction.

Corollary 17. Let δ > 0. Then if N is sufficiently large and A ⊂ [N ] is any
set of size at least δN , A contains an arithmetic progression of length 3.

Proof. Define a subset B ⊂ [2N ]2 to be {(x, y) : y−x ∈ A}. Then |B| ≥ δN2,
so by Theorem 16 we can find x, y, and d 6= 0 such that y − (x + d), y − x
and y + d− x all belong to A.

Theorem 18 (Erdős-Stone Theorem). Let H be a graph with chromatic
number k. Then a graph G with n vertices that contains no copy of H has
at most

(
1− 1

k−1

) (
n
2

)
(1 + o(1)) edges (and this is best possible).

Proof (sketch). The example of a complete (k− 1)-partite graph with vertex
subsets of roughly equal size shows that the estimate cannot be substantially
improved.

Conversely, suppose that G contains no copy of H. Let X1, X2, . . . , XM

be an ε-regular partition of V (G) for some small ε > 0. Remove edges xy if
they belong to sparse or irregular pairs Xi×Xj, or pairs with Xi or Xj small.
Not too many edges are removed. Let G′ be G with these edges removed.
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If G′ contains a Kk then, by a generalization of the lemma counting
triangles, the resulting k-partite subgraph contains several copies of H.

(The resulting lemma says that if you randomly embed V (H) into a
k-partite graph with all pairs regular, respecting the k-partition of V (H),
then the probability that φ(x)φ(y) ∈ E(G) whenever xy ∈ E(H) is what it
would be for random graphs of the appropriate density).

So G′ contains no Kk, and so by Turán’s theorem has at most
(
1− 1

k−1

) (
n
2

)
edges.

4 Crossing numbers and combinatorial

geometry

Theorem 19. A planar graph with n ≥ 3 vertices has at most 3n− 6 edges.

Proof. Assume wlog G is maximal planar (and so, in particular, is con-
nected). Then Euler’s theorem says that V − E + F = 2. It is easy to
see that every face has at least 3 edges, so the number of edge-face pairs
is equal to 2E and at least 3F . So F ≤ 2

3
E, giving V − E

3
≥ 2 and so

E ≤ 3V − 6.

Lemma 20. Let G be a graph with n vertices and m ≥ 4n edges. Then any
drawing of G in R2 must have at least m3

64n2 crossings.

Proof. First, note that the number of crossings is at least m− (3n− 6). To
see this, let G have m > 3n−6 edges. Remove an edge involved in a crossing
(which exists by Theorem 19). The number of crossings goes down by at
least 1. We can do this m− (3n− 6) times.

Now let 0 < p ≤ 1 and choose vertices independently and randomly with
probability p, forming an induced subgraph H. Suppose that G has been
drawn with t crossings. Then the expected number of vertices of H is pn,
the expected number of edges is p2m and the expected number of crossings is
p4t. Also, the expected number of crossings is at least p2m− 3pn. So choose
p such that p2m = 4pn, i.e. take p = 4n

m
(which by assumption is at most 1).

Then p4t ≥ pn, giving t ≥ n
p3 = m3

64n2 .

Definition. A pseudoline system in R2 is a collection Λ of curves l such that
any two intersect in at most one point.
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Theorem 21 (Szemerédi-Trotter Theorem). Let X ⊂ R2 be a set of n
points, and let Λ be a set of m pseudolines. Then the number of pairs (x, l)
such that x ∈ X, l ∈ Λ and x ∈ l, i.e. the number of incidences, is at most
8(m

2
3 n

2
3 + m + n).

Proof. Suppose that there are t incidences. Define a graph G with vertex set
X by joining x to y iff they are adjacent along some l ∈ Λ (i.e. regard Λ as
a drawing of G). Then G has at least t − m edges. If t ≥ 2m then this is
at least t

2
. If t ≥ 2m and t

2
≥ 4n then there are at least t3

512n2 crossings by
Lemma 20. But since Λ is a pseudoline system, there are at most

(
m
2

)
≤ m2

crossings. So t3 ≤ 512n2m2, and so t ≤ 8m
2
3 n

2
3 .

We have shown t ≥ max{2m, 8n} =⇒ t ≤ 8m
2
3 n

2
3 .

Corollary 22. Let X be a set of n points, and Λ a pseudoline system with
each l ∈ Λ containing at least k ≥ 2 points of X. Then |Λ| ≤ C max

{
n2

k3 , n
k

}
.

Proof. Let |Λ| = m. Then the number of incidences is at least mk. So

mk ≤ 8(m
2
3 n

2
3 + m + n) ≤ 16(m

2
3 n

2
3 + n). Hence either m

2
3 n

2
3 ≥ cmk or

n ≥ cmk, giving m ≤ C max
{

n2

k3 , n
k

}
.

Lemma 23. Let X ⊂ R2 be a set of size n, let A ⊂ R be a set of size r and
let f be a strictly concave or strictly convex function defined on some interval
that contains A. Let Z = {(a, f(a)) : a ∈ A} ⊂ R2. Then

|X + Z| ≥ c min{n
1
2 r

3
2 , nr}.

Proof. Let N = |X + Z| and let Γ be the graph of f . Then the curves x + Γ
(x ∈ X) from a pseudoline system, by the convexity/concavity of f . It has
size n. Each x ∈ Γ intersects X + Z in at least r points. Hence

n ≤ C max
{N2

r3
,
N

r

}
and so

N ≥ c min{r
3
2 n

1
2 , rn}.

Corollary 24. Let A, B, C ⊂ R be sets of size n and let f be as above.
Then |A + B||f(A) + C| ≥ cn

5
2 .

Proof. We note that B × C + {(a, f(a)) : a ∈ A} ⊂ (A + B) × (f(A) + C)

and so, by Lemma 23, |A + B||f(A) + C| ≥ c min{nn
3
2 , n2n} = cn

5
2 .
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Corollary 25. Let A be a set of size n in R, and let f be a strictly convex
or strictly concave function. Then

(i) either |A + A| ≥ cn
5
4 or |f(A) + f(A)| ≥ cn

5
4 ;

(ii) |A + f(A)| ≥ cn
5
4 ;

(iii) either |A + A| ≥ cn
5
4 or |A.A| ≥ cn

5
4 .

Proof. (i) Setting B = A and C = f(A) in Corollary 24, and noting that

|f(A)| ≥ n
2
, we observe that |A + A||f(A) + f(A)| ≥ cn

5
2 and the result

follows immediately.
(ii) Set B = f(A) and C = A.
(iii) We may assume wlog that half the elements of A are positive. Let

f(x) = log x. Since | log A + log A| = |A.A|, (iii) follows from (i) applied to
the set {a ∈ A : a > 0}.

Theorem 26. Let X be a set of n points in R2. Then the number of pairs
(x, y) ∈ X2 with d(x, y) = 1 is at most Cn

4
3 .

Proof. Define a multigraph G with loops by drawing around each x ∈ X a
unit circle and, for y, z ∈ X, joining y to z if they are adjacent along one
of the circles drawn. If the number of unit distances is t then the number of
edges is t.

Remove all circles that contain at most two points of X. So we’ve removed
at most 2n edges from G. Now any two vertices are joined by at most two
edges. If they are joined by precisely two then remove one of them. This
removes at most half the edges.

So if t ≥ 4n then the resulting simple graph has at least t
4

edges. If
t
4
≥ 4n then by Lemma 20 there are at least (t/4)3

64n2 = t3

4096n2 crossings. But
two circles cross in at most two points so the number of crossings is at most
2
(

n
2

)
≤ n2. So t3 ≤ 4096n4 and so t ≤ 16n

4
3 .

Theorem 27. Let G be a multigraph with n vertices, m edges and maximum
edge-multiplicity at most d. If m ≥ 32nd then the number of crossings is at
least cm3

n2d
.

Proof. For i = 1, 2, . . . , blog2 d + 1c, let Gi be the multigraph consisting of
all edges with multiplicities r such that 2i−1 ≤ r < 2i. For each i, let the
number of pairs xy that are joined in Gi be mi. The number of edges in
multigraphs Gi such that mi < 4n is at most

∑blog2 dc+1
i=1 4n.2i ≤ 16nd. So if

we remove these then we still have at least m
2

edges.
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Let B = {i : at least 4n pairs are joined in Gi}. If i ∈ B then I claim

that the number of crossings in Gi is at least
22(i−1)m3

i

64n2 . The reason is that
if we choose one edge at random from the set joining x to y (when they
are joined) then the probability that any given crossing survives is at most

2−2(i−1), but the number of crossings left is at least
m3

i

64n2 by Theorem 20. So

the number of crossings in G is at least
∑

i∈B
22(i−1)m3

i

n2 . But

m

2
≤
∑
i∈B

mi2
i =

∑
i∈B

2
2i
3 mi2

i
3 ≤

(∑
i∈B

22im3
i

) 1
3
(∑

i∈B

2
i
2

) 2
3

≤ C

(∑
i∈B

22(i−1)m3
i

) 1
3

d
1
3 .

Hence ∑
i∈B

22(i−1)m3
i

n2
≥ cm3

n2d
.

Theorem 28. Let X be a set of n points in R2. Then X determines at least
cn

4
5 distinct distances.

Proof. Suppose that the number of distinct distances is t, and that these
distances are r1, r2, . . . , rt. About each x ∈ X, draw circles of radius
r1, r2, . . . , rt. Define a multigraph by joining y, z ∈ X iff they are adjacent
along one of the circles drawn (once per arc with this property). We may
assume throughout the proof that n is large.

The number of edges is n(n − 1) ≥ 99
100

n2. If t < n
4
5 then the number of

edges from circles with at most two points is at most 2nt ≤ n2

100
, so remove

these. Let k be an integer to be chosen (it will be n
2
5 ). We now wish to

bound from above the number of edges of multiplicity at least k.
The perpendicular bisector of such an edge (considered geometrically) is

a line that contains at least k points of X. So we shall bound from above
the number of pairs (e, l) such that e is an edge, l bisects e, and l contains
u ≥ k points of X. The number of lines l with 2i−1 ≤ u < 2i is at most
C max{ n2

23i ,
n
2i} by Corollary 22. Each such line is involved in at most 2t.2i

pairs (e, l), so the total number is at most

C

( ∑
k≤2i≤

√
n

t
n2

23i
2i +

∑
√

n≤2i≤n

tn2i

2i

)
≤ C

(
t
n2

k2
+ tn log n

)
.

We want this to be less than n2

4
, which is true if t ≤ n

4
5 and t ≤ ck2.
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After removing all edges of multiplicities at least k, we still have at least
n2

2
edges left, so by Theorem 27, there are at most cn6

n2k
= cn4

k
crossings. But

the number of crossings is also at most n2t2, so t2 ≥ cn2

k
, and so t ≥ cn√

k
. So

we have shown that t ≥ c min
{

k2, n√
k

}
. If we choose k = n

2
5 , we get the

result.

Theorem 29 (Beck’s two-extremities theorem). Let X be a set of n
points in R2. Then either there are at least cn2 lines determined by pairs of
points in X, or some line contains at least cn points.

Proof. The number of lines containing between between 2i and 2i+1 points

is at most C max
{

n2

23i ,
n
2i

}
by Corollary 22. Any line with this property

contains at most 22i+1 pairs of points of X. So the number of pairs be-
longing to lines that contain between A and n

A
points of X is at most

C ′∑
A≤2i≤ n

A
max

{
n2

2i , 2
in
}
≤ C′′n2

A
(by consideration of two geometric sums).

So choosing A = 2C ′′, there must be at least n2

2
pairs belonging to lines with

at least n
A

or at most A points.
If any line contains at least n

A
points then we are done.

Otherwise, at least n2

2
pairs belong to lines with at most A2 pairs, so there

must be at least n2

2A2 lines.

Corollary 30. Let X be any set of n points in R2, not all collinear. Then
there must be some point x0 ∈ X such that there are at least cn different
lines containing x0 and some other point of X.

Proof. If cn points lie on a line, let x0 be some point not on the line. Oth-
erwise, there are at least cn2 lines so some point must be on at least cn of
them.

Lemma 31. Let A, B ⊂ R be sets of size n. Then the number of collinear
triples in A×B is at most Cn4 log n.

Proof. By Corollary 22, the number of lines with r points of A×B for some
r with 2i ≤ r < 2i+1 is at most Cn4

23i (since n2

2i ≤ n4

(2i)3
as r ≤ n). Such a line

contains at most C23i triples. So the number of collinear triples is at most
C
∑

2i≤n
n4

23i 2
3i = Cn4 log n.

Theorem 32. Let A ⊂ R be a set of size n. Then |A + A|4|A.A| ≥ cn6

log n
.

Proof. Let |A.A| = p and |A+A| = s. Then A×A is contained in the union
of the p sets Xλ = {(x, y) : xy = λ} for λ ∈ A.A. So

∑
λ∈A.A |Xλ| ≥ n2,
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and, by Cauchy-Schwarz,
∑

λ∈A.A |Xλ|2 ≥ n4

p
, so there are at least p−1n4

pairs ((a′, b′), (a′′, b′′)) such that a′b′ = a′′b′′ (i.e. belonging to the same Xλ).
For every (a, b) ∈ A × A and every such pair, we get a collinear triple
((a, b), (a + a′, b + b′′), (a + a′′, b + b′)) in (A ∪ (A + A))× (A ∪ (A + A)). By
Lemma 31 (and the fact that |A| ≤ |A + A| ≤ |A|2), n2p−1n4 ≤ Cs4 log n,
and so ps4 ≥ cn6

log n
.

Example. Let k ≤
√

n. Let X = {1, 2, . . . , k}×
{
1, 2, . . . , n

k

}
. Then any line

y = mx + b with m, b ∈ N, b ≤ n
2k

and m ≤ n
2k2 goes through k points of X,

and there are cn2

k3 of them. On the other hand, if k ≥
√

n then pick any n
k

lines and put k points on each. This shows that Corollary 22 is tight.

5 Monotone Circuit Complexity

A circuit is a directed, acyclic graph with different kinds of vertices called
inputs, outputs, AND gates, OR gates, and NOT gates with the following
properties:

(i) x is an input iff it has in-degree zero;

(ii) x is an output iff it has out-degree zero;

(iii) x is a NOT gate iff it has in-degree 1;

(iv) x may be both an output and a gate.

Let f be a function from the set I of inputs of some circuit C to the set
{0, 1}. Then there is a unique extension g of f to V (C) such that

(i) if x is an input then g(x) = f(x);

(ii) if x is an AND gate then g(x) = 1 iff g(y) = 1 for every predecessor y
of x;

(iii) if x is an OR gate then g(x) = 1 iff g(y) = 1 for some predecessor y of
x;

(iv) if x is a NOT gate then g(x) = 1 iff g(y) = 0 for the unique predecessor
y of x.
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We say that the circuit C computes the function φ : {0, 1}I → {0, 1}O,
where O is the set of output vertices, if φ(f) = g|O for the function g just
defined.

A circuit is binary if the in-degree of every vertex is at most 2. It is
monotone if there are no NOT gates. It is easy to prove that if C is a
monotone circuit then the function φ it computes is montotone, in the sense
that if f ≤ g (i.e. f(x) < g(x) for all x) then φ(f) ≤ φ(g).

Proposition 33. There is a function φ : {0, 1}n → {0, 1} that cannot be
computed by a binary circuit of size less than 2n

100n
.

Proof. The number of binary circuits with m vertices is at most (10m2)m. For
these to compute all functions from {0, 1}n to {0, 1}, we need (10m2)m ≥ 22n

which implies m(2 log2 m + log2 10) ≥ 2n, giving m ≥ 2n

100n
.

Given a circuit C, let us label the input vertices x1, x2, . . . , xn and the
remaining vertices xn+1, xn+2, . . . , xm in such a way that each xi comes after
its predecessors in the circuit. For each i, let

Ai =
{
f : {x1, x2, . . . , xn} → {0, 1} : g(xi) = 1 for g as defined earlier

}
.

Then for 1 ≤ i ≤ n, Ai = {f : f(xi) = 1} = Ei (where E stands for
“elementary”). We can think of Ei as a subset of {0, 1}n—consisting of all
points with i-coordinate 1.

If xi is an AND (OR) gate with predecessors xj and xk then Ai = Aj∩Ak

(Aj ∪ Ak). If xi is a NOT gate with predecessor xj then Ai = Ac
j. Hence

φ : {0, 1}n → {0, 1} can be computed by a circuit C of size m iff there is a
sequence A1, A2, . . . , Am of sets with the following properties:

(i) if 1 ≤ i ≤ n then Ai = Ei = {f : f(i) = 1};

(ii) if i > n then Ai = Aj ∩Ak, Ai = Aj ∪Ak or Ai = Ac
j for some j, k < i;

(iii) Am = A(φ) = {f : φ(f) = 1}.

Razborov’s method of approximations

The basic idea of the proof to follow, that a certain monotone function φ has
high monotone circuit complexity, is this:

We shall define a lattice L of subsets of {0, 1}n with operations u and
t that approximate ∩ and ∪ well enough that whenever we take a sequence
A1, A2, . . . , Am as above and define a new sequence B1, B2, . . . , Bm by using
u and t instead of ∩ and ∪ then Bm is close to Am (if m is small). It follows
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that every function with small monotone circuit complexity is approximated
by some function in L. We then need to show that {f : φ(f) = 1} is not
approximated by a function in L.

Notation. If B, B′ ∈ L, define δt(B, B′) to be BtB′−(B∪B′) and δu(B, B′)
to be B ∩B′ − (B uB′).

Let L be a lattice of subsets of {0, 1}n with operations u and t and
suppose that the elementary sets Ei = {ε ∈ {0, 1}n : εi = 1} are contained
in L. Suppose that A tB ⊃ A ∪B and A uB ⊂ A ∩B for every A, B ∈ L.

Now let us suppose that A1, A2, . . . , Am is a monotone straight-line
calculation of Am = A, i.e. Ai = Ei if i ≤ n, and Ai = Aj∪Ak or Ai = Aj∩Ak

for some j, k < i if i > n. Let B1, B2, . . . , Bm be defined by Bi = Ai if
i ≤ n, and Bi = Bj t Bk or Bi = Bj u Bk according as Ai = Aj ∪ Ak or
Ai = Aj ∩ Ak for i > n. Write Mi, Ni for the two sets that make Bi.

Lemma 34. Under these circumstances,

Bm ⊂ Am ∪
m⋃

i=1

δt(Mi, Ni)

and

Bm ⊃ Am −
( m⋃

i=1

δu(Mi, Ni)

)
.

Proof. The proof is by induction on m.
If Bm = Bj tBk then

Bm = Bj ∪Bk ∪ δt(Bj, Bk)

⊂ Aj ∪
j⋃

i=1

δt(Mi, Ni) ∪ Ak ∪
k⋃

i=1

δt(Mi, Ni) ∪ δt(Mm, Nm)

⊂ Am ∪
m⋃

i=1

δt(Mi, Ni)

(as Aj ∪ Ak = Am) and

Bm ⊃ Bj ∪Bk

⊃

(
Aj −

( j⋃
i=1

δu(Mi, Ni)

))
∪

(
Ak −

( k⋃
i=1

δu(Mi, Ni)

))

⊃ Am −
( m⋃

i=1

δu(Mi, Ni)

)
.
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Similarly, if Bm = Bj uBk then

Bm = Bj ∩Bk − δu(Bj, Bk)

⊃

(
Aj −

( j⋃
i=1

δu(Mi, Ni)

))
∩

(
Ak −

( k⋃
i=1

δu(Mi, Ni)

))
− δu(Bj, Bk)

⊃ Am −
( m⋃

i=1

δu(Mi, Ni)

)
and

Bm ⊂ Bj ∩Bk

⊂
(

Aj ∪
j⋃

i=1

δt(Mi, Ni)

)
∩
(

Ak ∪
k⋃

i=1

δt(Mi, Ni)

)
⊂ Am ∪

m⋃
i=1

δt(Mi, Ni).

Definition of L

Let W , W1, W2, . . . , Wr be sets. We shall say that W1, W2, . . . , Wr entail
W , and write W1, W2, . . . , Wr ` W if Wi ∩Wj ⊂ W for all i 6= j. (The sets
W1, W2, . . . , Wr are not necessarily distinct.)

Write [n](≤k) for the set of all subsets of {1, 2, . . . , n} of size at most k.
Say that a subset A ⊂ [n](≤k) is closed if whenever W1, W2, . . . , Wr ∈ A
and W1, W2, . . . , Wr ` W then W ∈ A (where r ≥ 2 is some fixed number
to be chosen later). If A ⊂ [n](≤k) then the closure of A, written A∗, is the
intersection of all closed sets that contain A.

Given a set A ⊂ [n](≤k), write dAe for the set of all graphs with vertex
set [n] that contain a clique with vertex set A for some A ∈ A.

The lattice L will consist of all sets of the form dAe forA closed. We define
the operations t and u by dAeudBe = dA∩Be and dAetdBe = d(A∪B)∗e.
It is easy to check that dAe u dBe ⊂ dAe ∩ dBe and dAe t dBe ⊃ dAe ∪ dBe.

Lemma 35. A closed set can have at most (r − 1)k minimal elements.

Proof. If A is closed and A1, A2, . . . , Ar, A are minimal elements of A then
it is not possible to find B ( A such that Ai∩Aj ⊂ B for all i 6= j. We shall
show that any collection of sets with this property has cardinality at most
(r − 1)k. We do this by induction on r (noting that the result is clear when
r = 2).
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Let M be a collection of sets with this property and let F ∈M. For each
C ⊂ F , let MC = {A ∈ M : A ∩ F = C}. If A1, A2, . . . , Ar−1, A ∈ MC

and if B ( A with Ai ∩ Aj ⊂ B for all i 6= j, then C ⊂ B, from which it
follows that A1, A2, . . . , Ar−1, F ` B, a contradiction. It follows that the
sets A− F = A− C for A ∈ MC have the same property, but with k and r
replaced by k − |C| and r − 1.

Hence by induction, |MC | ≤ (r − 2)k−|C| and so

|M| ≤
∑
C⊂F

(r−2)k−|C| ≤
|F |∑
i=0

(
|F |
i

)
(r−2)k−i ≤

k∑
i=0

(
k

i

)
(r−2)k−i = (r−1)k.

Example. Let B1, B2, . . . , Bk be disjoint sets of size r−1 and let M⊂ [n](≤k)

be the collection {A : |A ∩ Bi| = 1, 1 ≤ i ≤ k}. Then |M| = (r − 1)k. If
A1, A2, . . . , Ar ∈M then for all i, there exist j 6= k with Aj ∩Bi = Ak ∩Bi.
Therefore if A1, A2, . . . , Ar ` B we have |B ∩Bi| ≥ 1 for all i.

Definition. A g-colouring of [n] is a function f : [n] → [g]. If A ⊂ [n] then
we say A is properly coloured (or PC ) if every element of A has a different
colour (i.e. f |A is an injection).

Lemma 36. Let A ⊂ [n](≤k) be a set system and let A ∈ [n](≤k) be such that
A1, A2, . . . , Ar ` A for some A1, A2, . . . , Ar ∈ A. Let f : [n] → [g] be a
random g-colouring of [n]. Then the probability that A is properly coloured

and no A′ ∈ A is PC is at most
(
1− g(g−1)...(g−k+1)

gk

)r

.

Proof. The probability in question is clearly at most

P[A is PC and no Ai is PC for i = 1, 2, . . . , r]

≤ P[no Ai is PC|A is PC]

=
r∏

i=1

P[Ai is not PC|A is PC] (since the Ai − A are disjoint)

=
r∏

i=1

(1− P[Ai is PC|A is PC]) .

But P[Ai is PC|A is PC] ≥ g(g−1)...(g−k+1)
gk which proves the lemma.
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Lemma 37. Let A ⊂ [n](≤k) be a set system and let f : [n] → [g] be a
random g-colouring of [n]. Then the probability that no A′ ∈ A is PC but

some A ∈ A∗ is PC is at most nk
(
1− g(g−1)...(g−k+1)

gk

)r

.

Proof. Enumerate the sets in A∗ as A1, A2, . . . , Am, starting with the sets
in A, such that each Ai ∈ A∗ − A is entailed by r earlier sets. Then
the event in question is the disjoint union of the events ‘Ai is the first set
to be PC’ for i > |A|. By Lemma 36, the probability of this is at most(
1− g(g−1)...(g−k+1)

gk

)r

. But obviously m ≤
∑k

i=0

(
n
i

)
≤ nk and so the lemma

is proved.

A g-colouring f defines a complete g-partite graph G(f) in [n] where you
join x to y iff f(x) 6= f(y). A set A is PC iff the clique with vertex set A is a
subgraph of G(f). So if A is a set system, then G(f) ∈ dAe iff some A ∈ A
is PC. So Lemma 37 gives an upper bound on the proportion of complete
g-partite graphs contained in a set of the form dA∗e − dAe.

The main argument

Let C be the set of all graphs on n vertices that contain a clique of size m (so C
can be thought of as a subset of {0, 1}[n](2)). Suppose thatA1, A2, . . . , AN = C
is a monotone straight-line computation of C and let B1, B2, . . . , BN be the
results of the corresponding computation in L with ∩ and ∪ replaced by u
and t respectively.

Case 1: BN is the set of all graphs on [n].

We know by Lemma 34 that BN ⊂ AN ∪
⋃N

l=1 δt(Ml, Nl) where (Ml, Nl) is a
pair of the form (Bi,Bj). But

δt(Bi,Bj) = d(Bi ∪ Bj)
∗e − dBi ∪ Bje = d(Bi ∪ Bj)

∗e − (dBie ∪ dBje) .

By Lemma 37, the proportion of complete (m−1)-partite graphs in δt(Bi,Bj)

is therefore at most nk
(
1− (m−1)(m−2)...(m−k)

(m−1)k

)r

. Set k =
√

m. Then

(m− 1)(m− 2) . . . (m− k)

(m− 1)k
≥
(

1− k

m

)k

≈ e−
k2

m =
1

e
= c.

So the proportion of complete (m− 1)-partite graphs in δt(Bi,Bj) is at most
nke−cr, which implies that N ≥ ecr−k log n. So we will need cr ≥ 2k log n.
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Case 2: BN is not the set of all graphs.

First we attain an upper bound on the number of m-cliques contained in
BN . We know that BN is a set of the form dAe for some closed set A. Any
m-clique in dAe must have a vertex set of size m that contains some minimal
element A of A as a subset, with |A| ≥ 2.

Now by Lemma 35, the number of minimal elements of A of size i is at
most (r − 1)i. Each is contained in at most

(
n−i
m−i

)
sets of size m, so the

number of m-cliques in dAe is at most

k∑
i=2

(r − 1)i

(
n− i

m− i

)
≤
(

n

m

) k∑
i=2

(r − 1)i
(m

n

)i

so if (r−1)m
n

≤ 1
2

then this is at most 1
2

(
n
m

)
.

It remains to obtain an upper bound for the number of m-cliques in any
δu(dAe, dBe) with A, B closed. Then we will be done by Lemma 34 since
AN ⊂ BN ∪N

i=1 δu(Mi, Ni) and so very many steps will be required to reach
1
2

(
n
m

)
.

Suppose that K(Z) is an m-clique with vertex set Z, and suppose that
K(Z) ∈ (dAe ∩ dBe) − (dA ∩ Be). Then Z must contain minimal elements
X and Y of A and B respectively, and X ∪ Y is not an element of A ∩ B.
The only way this can happen is if |X∪Y | > k, so either |X| > k

2
or |Y | > k

2
.

It follows that the number of possible Z is at most

2
∑
i> k

2

(r − 1)i

(
n− i

m− i

)
≤ 2

(
n

m

)∑
i> k

2

(
(r − 1)m

n

)i

≤ 4

(
n

m

)
2−

k
2 .

It follows that, in case 2, N ≥
1
2(

n
m)

4(n
m)2−

k
2

= 1
8
2

k
2 .

We have shown that N ≥ min{e cr
2 , 1

8
2

k
2 }, subject to the restrictions

k2 = m, r ≥ ck log n and rm ≤ cn, so r ≥ c
√

m log n, and so m
3
2 log n ≤ cn,

and so m ≤
(

cn
log n

) 2
3
. So take that for m, and let k =

(
cn

log n

) 1
3

and

r = ck log n; we obtain a bound of e(
cn

log n)
1
3

as the monotone circuit com-
plexity of a function of

(
n
2

)
variables.

6 Algebraic methods

Theorem 38 (Frankl, Wilson). Let F be a subset of [n](k)—i.e. a set
system consisting of subsets of [n] of size k. Let p be a prime and let
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λ1, λ2, . . . , λs be residues mod p, none of them congruent to k. Let Λ be
the set {λ1, λ2, . . . , λs}

Suppose that |F ∩ F ′| is congruent to some λ ∈ Λ whenever F , F ′ ∈ F
with F 6= F ′. Then |F| ≤

(
n
s

)
.

Proof. Assume wlog s < k. For each i < j let N(i, j) be the
(

n
i

)
×
(

n
j

)
matrix

defined on pairs (A, B) ∈ [n](i) × [n](j) by

N(i, j)(A, B) =

{
1 if A ⊂ B
0 if A 6⊂ B

.

Let V be the vector space over R spanned by the rows of N(s, k). There are(
n
s

)
rows, so dim V ≤

(
n
s

)
.

Let i ≤ s and look at the matrix N(i, s)N(s, k), which is an
(

n
i

)
×
(

n
k

)
matrix defined on pairs (A, B) ⊂ [n](i) × [n](k). We see that

N(i, s)N(s, k)(A, B) =
∑

C⊂[n](s)

1A⊂C1C⊂B

=

{ (
k−i
s−i

)
if A ⊂ B

0 if A 6⊂ B

so N(i, s)N(s, k)(A, B) =
(

k−i
s−i

)
N(i, k)(A, B). It follows that the rows of

N(i, k) belong to V .
Now let M(i, k) = N(i, k)T N(i, k). If (A, B) ∈ [n](k) × [n](k), then

M(i, k)(A, B) =
∑

C⊂[n](i)

1C⊂A1C⊂B =

(
|A ∩B|

i

)
.

Now choose a1, a2, . . . , as such that
∏

λ∈Λ(x − λ) =
∑s

i=1 ai

(
x
i

)
and let

M =
∑s

i=1 aiM(i, k). The rows of M(i, k) and hence M belong to V . But
M(A, B) ≡ 0 (mod p) if A, B ∈ F with A 6= B since then A ∩B ≡ λ (mod p)
for some λ ∈ Λ and so

∑
ai

(|A∩B|
i

)
≡ 0 (mod p) (by definition of a1, . . . , as).

If A = B then |A ∩B| 6≡ λ (mod p) for any λ ∈ Λ so M(A, B) 6≡ 0 (mod p).
That applies if A, B ∈ F . So the restriction of M to pairs (A, B) ∈ F has
rows which are linearly independent over the field Fp and hence over R, and
so is a matrix of rank |F|. But since the rows of M belong to V , M has rank
at most

(
n
s

)
. So |F| ≤

(
n
s

)
.

Borsuk’s conjecture

Borsuk asked whether every convex body in Rd can be partitioned into at
most d + 1 sets of smaller diameter.
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Larman had the following idea for potential counterexamples. Take a set
system F ⊂ [n](k) and associate with F ∈ F a 01-sequence in the usual way
and regard it as a point in Rn. Then writing F for this point as well, we have
d(F, F ′) = |F∆F ′| 12 . In particular, this distance is maximized when |F ∩F ′|
is minimized. So look for a set system F such that however you partition it
into F1 ∪F2 ∪ · · · ∪Fm if m is not too large then some Fi contains F and F ′

with |F ∩ F ′| minimal (amongst all pairs from F).

Corollary 39. Let p be a prime and let n = 4p. Let F ⊂ [n](2p) be such that
for all F , F ′ ∈ F , |F ∩ F ′| 6= p. Then |F| ≤

(
n

p−1

)
.

Proof. The condition implies that |F ∩ F ′| ∈ {1, 2, . . . , p − 1} (mod p) if
F 6= F ′.

Disproof of Borsuk’s conjecture

Let m = 4p and let n =
(

m
2

)
. Identify [m](2) with [n].

Given any partition of [m] into two sets A and B of equal size, let
G(A, B) be the complete bipartite graph with vertex sets A and B. Then,
if (A, B) and (C, D) are two such partitions with |A ∩ C| = k, we have
|G(A, B) ∩G(C, D)| = k2 + (2p− k)2 which is minimized when k = p. So
by Corollary 39, any subset F ′ ⊂ F that does not contain a pair G(A, B)
and G(C, D) at maximal distance apart has size at most

(
m

p−1

)
(since if you

look at the A’s you get A ⊂ [m](2p) with A 6= A′ =⇒ |A ∩ A′| 6= p). But
|F| = 1

2

(
m
2p

)
. So the smallest partition has size at least

(
m
2p

)/
2
(

m
p−1

)
.

Now,
(
4p
2p

)/(
4p

p−1

)
is ‘roughly’ 24p/

(
4
3

)3p · 4p = α4p for some α > 1. Hence
we have shown the following:

Theorem 40. There is a convex body in Rn that cannot be partitioned into
c
√

n parts of smaller diamter, with c > 1 an absolute constant.

Theorem 41. Let p be a prime and n a positive integer. Let G be a graph
with vertex set [n](p

2−1) where F is joined to F ′ iff |F ∩ F ′| ≡ −1 (mod p).
Then G contains no clique or independent set of size greater than

(
n

p−1

)
.

Proof. If F is an independent set then |F ∩ F ′| ∈ {0, 1, . . . , p− 2} (mod p)
if F 6= F ′, so by Theorem 38, F ≤

(
n

p−1

)
. If F is a clique then for F 6= F ′

we have |F ∩F ′| ∈ {p− 1, 2p− 1, . . . , p2− p− 1} which implies by Theorem
38 with respect to some prime q > p− 1, that |F| ≤

(
n

p−1

)
.
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If we now set n = p3, we find that the Ramsey number R
((

p3

p−1

)
+ 1
)

is

greater than
(

p3

p2−1

)
. Let k =

(
p3

p−1

)
≤ p3p. Then

(
p3

p2 − 1

)
≥ pp2−1 ≥

(
log k

log log k

)c( log k
log log k)

2

≥ ec log log k( log k
log log k)

2

= ec
(log k)2

log log k

which exceeds any fixed power of k.

Theorem 42. There is a subset A ⊂ {1, 2, . . . , n} of size c
√

n containing
no quadruple (x, y, z, w) with x + y = z + w except degenerate ones.

Proof. Let p be an odd prime. Let Γ ⊂ [p]2 be the set

Γ =
{(

x, x2 (mod p)
)

: x = 1, 2, . . . , p
}
.

Then

(x, x2)+(y, y2) = (z, z2)+(w, w2) (mod p) =⇒
{

x− z ≡ w − y (1)
x2 − z2 ≡ w2 − y2 (2)

.

If x 6= z then x 6≡ z and we can divide (2) by (1) to get x+ z ≡ w + y, giving
x ≡ w and y ≡ z, and so x = w and y = z.

Now map Γ to [n] by the map (a, b) 7→ a+2pb−2p. If ai, bi, ci, di ∈ [p] with
a1 +2pa2 + b1 +2pb2 = c1 +2pc2 +d1 +2pd2 then a1 + b1 ≡ c1 + d1 (mod 2p)
from which it follows that a1 + b1 = c1 + d1 and so a2 + b2 = c2 + d2.
So the image of Γ is a subset of [2p2] of size p containing no non-trivial
x + y = z + w.

Theorem 43. For all n ∈ N, there is a family A ⊂ P[2n] of size 2n with no
non-trivial solutions of A∆B = C∆D.

Proof. We can identify P[2n] in the usual way with {0, 1}2n and we can
identify that with {0, 1}n ×{0, 1}n. Now we’d like to find X ⊂ {0, 1}2n with
no non-trivial solutions to x + y = z + w.

We can think of {0, 1}n as the additive group of the field with 2n elements,
and then let X = {(x, x3) : x ∈ {0, 1}n} ⊂ {0, 1}n × {0, 1}n. As before, if
(x, x3) + (y, y3) = (z, z3) + (w,w3) then x + y = z + w and x3 + y3 = z3 + w3

which implies, unless x = y and z = w, that x2 + xy + y2 = z2 + zw + w2.
But (x + y)2 = x2 + y2 = z2 + w2 so xy = zw. That is enough to show that
(x, y) = (z, w).

Theorem 44 (Behrend, 1947). There is a subset X ⊂ [n] of size ne−c
√

log n

that contains no arithmetic progression of length 3.
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Proof. Let m, k ∈ N and define Br ⊂ [m]k to be the set

Br =

{
(x1, x2, . . . , xk) :

k∑
i=1

x2
i = r

}
.

This set lies on the surface of a sphere so contains no three collinear points,
and in particular no arithmetic progression of length 3 (in the obvious sense).
There are at most km2 values of r for which Br 6= ∅, so some Br has size
at least mk

m2k
. Let B be such a Br. Now map B to [(2m)k] by the map

φ(x1, x2, . . . , xk) = x1 + 2mx2 + (2m)2x3 + · · · + (2m)k−1xk. Then if φ(x),
φ(y) and φ(z) are in arithmetic progression, we have x1, y1, z1 in arithmetic
progression mod 2m, giving x1, y1, z1 in arithmetic progression. Then 2mx2,
2my2, 2mz2 are in arithmetic progression mod (2m)2 giving x2, y2, z2 in
arithmetic progression and so on. So x, y, z are in arithmetic progression, a
contradiction.

Let n = (2m)k. Then we have found a subset of [n] with no arith-

metic progression of length 3 with size at least mk

m2k
. Let k =

√
log n and

m = 1
2
e
√

log n. Then the size is at least

n

2
√

log n 1
4
e2
√

log n
√

log n
≥ ne−c

√
log n.

7 Topological methods

Theorem 45 (The Borsuk-Ulam Theorem). Let

Sn = {x ∈ Rn+1 : ‖x‖ = 1}.

Let f : Sn → Rn be any continuous function. Then there exists x ∈ Sn such
that f(x) = f(−x).

Corollary 46. Let A1, A2, . . . , An+1 be subsets of Sn, all either open or
closed, such that Sn =

⋃n+1
i=1 Ai. Then some Ai contains a pair {x,−x} of

antipodal points.

Proof. Define f : Sn → Rn by f(x) =
(
d(x, A1), d(x, A2), . . . , d(x, An)

)
.

Then f is continuous so, by the Borsuk-Ulam Theorem, we can find x such
that f(x) = f(−x). We know that x ∈ Ai for some i.

If i ≤ n and Ai is closed then d(−x, Ai) = 0 so −x ∈ Ai.
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If i ≤ n and Ai is open then d(−x, Ai) = 0. Then a small perturbation
−y of −x is in Ai, and y ∈ Ai since Ai is open and the perturbation small.

This shows that we are done if either x ∈ Ai for some i ≤ n or −x ∈ Ai

for some i ≤ n. So we can assume that this is not the case. Then x ∈ An+1

and −x ∈ An+1.

Theorem 47. For every n there is a finite triangle-free graph with chromatic
number n.

Proof. First, we will find an infinite graph G. Let V (G) = Sn and join x to y
iff 〈x, y〉 < −1

2
—i.e. the angle between x and y is greater than 120◦. Clearly

G is triangle-free. Now, let Sn = A1 ∪ A2 ∪ · · · ∪ An+1. Then, by Corollary
46, some Āi contains an antipodal pair {x,−x}. Choose y and z in Ai, close
enough to x and −x for 〈y, z〉 < −1

2
, and then we have an edge inside Ai. So

χ(G) > n + 1.
To make this into a finite graph, let δ > 0 be small and let ∆ be a δ-net

of Sn—i.e. for all x ∈ Sn, there is some y ∈ ∆ such that d(x, y) < δ. Join
x, y ∈ ∆ iff 〈x, y〉 < −2

3
. Now let ∆ = B1 ∪ B2 ∪ · · · ∪ Bn+1. Let Ai ⊂ Sn

be {x : ∃y ∈ Bi with d(x, y) < δ}. Then some Āi contains an antipodal pair
{z,−z}. But we can find v, w ∈ Bi close to z, −z, so 〈v, w〉 < −2

3
and so

the colouring is not proper.

Theorem 48 (Kneser’s conjecture, proved by Lovasz). Let G be the
graph with vertex set [n](k) in which A and B are joined iff A∩B = ∅. Then
χ(G) = max{n− 2k + 2, 1}.

Proof (due to Greene). First consider the colouring

φ(G) = min{min A, n− 2k + 2}.

This is an (n − 2k + 2)-colouring. If φ(A) = φ(B) < n − 2k + 2 then
min A = min B and so A ∩ B 6= ∅. If φ(A) = φ(B) = n − 2k + 2 then
A, B ⊂ [n− 2k + 2, n], but this set has size 2k − 1 and so A and B cannot
be disjoint.

To show that χ(G) = n − 2k + 2, let d = n − 2k + 1 and let X ⊂ Sd be
a set of n points in general position, so no d + 1 points of X are contained
in a d-dimensional subspace of Rd+1. Identify [n] with X, or, in other words,
take V (G) = X(k).

Let φ : X(k) → [d] be a colouring of X(k). For each x ∈ Sd, let
Hx = {y ∈ Sd : 〈x, y〉 > 0}. For each i ≤ d, let Ai be the set of all points
x ∈ Sd such that Hx contains a k-tuple from X coloured with colour i. Let
Ad+1 = Sd − (A1 ∪ A2 ∪ · · · ∪ Ad). Note that Ai is open for i ≤ d, and so
Ad+1 is closed.
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By the Borsuk-Ulam Theorem, some Ai must contain an antipodal pair
{x,−x}. If i ≤ d, then both Hx and H−x contain k-tuples coloured with
colour i. But Hx and H−x are disjoint, so these k-tuples are disjoint and the
colouring is not proper.

If i = d+1 then neither Hx nor H−x contains any k-tuple from X. Hence
Sd − (Hx ∪ H−x) = {y : 〈x, y〉 = 0} contains at least n − 2(k − 1) = d + 1
points, contradicting the fact that the points of X are in general position.

Next, we look at another equivalent formulation of the Borsuk-Ulam The-
orem.

Theorem 49. Let Bn = {x ∈ Rn : ‖x‖ ≤ 1}. Then there is no continu-
ous map f : Bn → Sn−1 that is antipodal on the boundary—i.e. such that
f(x) = −f(−x) for every x ∈ Sn−1.

Before proving this, we observe that it implies the Borsuk-Ulam Theorem.

Proof (of Theorem 45). Suppose that we could find some continuous map
f : Sn → Rn that did not identify two antipodal points. Then we can define
g : Sn → Rn by g(x) = (f(x) − f(−x))

/
‖f(x) − f(−x)‖. Note that g is

continuous and g(−x) = −g(x). Also, the image of g lies inside Sn−1.
Now define h : Bn → Sn−1 by h(x) = g

(
(x,
√

1− ‖x‖2)
)
. Then h is

continuous, and antipodal on the boundary of Bn.

Exercise. Show that Theorem 45 implies Theorem 49.

Theorem 50 (Tucker’s Lemma). Let T be a triangulation of Bn that
is antipodally symmetric on the boundary. That is, if σ ∈ T with σ ⊂
Sn−1 then −σ ∈ T . Let λ be a labelling of the vertices of T with labels
from the set {1, 2, . . . , n}∪{−1,−2, . . . ,−n}. Then if this labelling satisfies
λ(−x) = −λ(x) for every vertex x, there must be some edge (i.e. 1-simplex)
with vertices labelled i and −i.

We shall prove Tucker’s lemma in an alternative formulation. Let L be
the “octahedral triangulation” consisting of all convex hulls of up to n of the
vectors ±ei (where (ei)

n
i=1 is the standard basis of Rn) such that you never

use both ei and −ei.
Then a simplicial map from T to L is exactly a map φ that takes the

vertices of T to {e1, e2, . . . , en} ∪ {−e1,−e2, . . . ,−en} such that if x and y
are vertices of the same simplex in T then {φ(x), φ(y)} 6= {ei,−ei} for any i.

So under the hypotheses on T , Tucker’s lemma says that there is no
simplicial map φ : T → L such that φ|Sn−1 is antipodal.
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We first show that Tucker’s lemma implies Theorem 49.

Proof (of Theorem 49). Assume Theorem 49 is false and let f : Bn → Sn−1

be a continous map, antipodal on the boundary. We shall construct a coun-
terexample to Tucker’s lemma.

Since f is uniformly continuous, we can find δ > 0 such that whenever
d(x, y) < δ we have d(f(x), f(y)) < 1√

n
. Let T be a triangulation of Bn of

mesh less than δ (i.e. with every simplex having diameter less than δ). We
now define a simplicial map φ : T → L as follows. For each vertex x ∈ T , let
φ(x) be the nearest point of {±e1,±e2, . . . ,±en} to f(x), choosing i minimal
in the case of a tie. Note that φ(−x) = −φ(x) for x ∈ Sn−1. Also,

φ(x) =

{
ei

−ei

}
=⇒ f(x)i

{
≥ 1√

n

≤ − 1√
n

so if x and y belong to the same simplex then {φ(x), φ(y)} 6= {ei,−ei} by
choice of δ.

Given a simplicial complex T , a k-chain is a set of k-simplices belonging
to T . We shall think of these sets as formal sums of simplices over Z2. Given
a simplex σ, the boundary ∂σ is the set of all (k − 1)-facets of σ. Given a
k-chain σ1 + σ2 + · · · + σr = A, we define ∂A to be ∂σ1 + ∂σ2 + · · · + ∂σr.
We have the following simple facts: ∂(A + A′) = ∂A + ∂A′ and ∂∂A = 0
(since this is true for a k-simplex σ). Given a simplicial map φ : T → K
and a k-simplex σ ∈ T , we define φk(σ) to be φ(σ) if this is a k-simplex
and 0 otherwise. If A = σ1 + σ2 + · · · + σr then φk(A) is defined to be
φk(σ1) + φk(σ2) + · · ·+ φk(σr). It is easy to check (simplex by simplex) that
φk−1(∂A) = ∂(φk(A)).

Proof (of Tucker’s lemma). This comes in three steps. Let T be a triangula-
tion of Bn, let K be the restriction of T to Sn−1, assume that K is antipodally
symmetric and let φ : T → L be a simplicial map. We also make the following
extra assumption about T :

For 0 ≤ k ≤ n− 1, let

H+
k = {x ∈ Sn−1 : xk+2 = xk+3 = · · · = xn = 0, xk+1 ≥ 0}.

and
H−

k = {x ∈ Sn−1 : xk+2 = xk+3 = · · · = xn = 0, xk+1 ≤ 0}.
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We shall assume that for each H±
k there is a subcomplex of T that triangulates

it.
Call such a triangulation proper and note that Tucker for proper trian-

gulations still implies Theorem 49.
For each k, let A±

k be the k-chain from T that triangulates H±
k and let

C±
k = φkA

±
k . Let Ak be the k-chain from T that triangulates H+

k ∪H−
k and

let Ck = φk(Ak). Note in particular that An−1 is simply the (n− 1)-chain of
all (n − 1)-simplices in K. Let An be the chain of all n-simplices of T . We
shall show the following facts:

(i) either Cn−1 is 0 or it consists of all (n− 1)-simplices of L, i.e. either
every (n − 1)-simplex of L has an odd number of preimages or every
(n− 1)-simplex of L has an even number of preimages. We say that φ
has odd or even degree respectively;

(ii) for any simplicial map from T to L, its restriction to An−1 has even
degree;

(iii) any antipodally symmetric map φ : K → L has odd degree.

The proofs of these facts are as follows:

(i) If this is false then there must be neighbouring (n− 1)-simplices σ, τ ∈ L
with σ ∈ Cn−1 and τ 6∈ Cn−1. Then their common facet belongs to ∂Cn−1.

But ∂Cn−1 = φn−2(∂An−1), and ∂An−1 = 0, since any (n− 2)-simplex of
K is a facet of exactly two (n− 1)-simplices.

(ii) Let φ : T → L be a simplicial map. Then φn−1(An−1) = φn−1(∂An). But
this is ∂(φnAn) = 0 since φnAn = 0, since L contains no n-simplices.

(iii) Assume, for a contradiction, that φ has even degree, i.e. that Cn−1 = 0.
We know that An−1 = A+

n−1 + A−
n−1, so Cn−1 = φn−1An−1 = C+

n−1 + C−
n−1.

Since φ is antipodally symmetric and A+
n−1 is antipodal to A−

n−1, C+
n−1 is

antipodal to C−
n−1, but also C−

n−1 = C+
n−1, so C+

n−1 is antipodally symmetric.
But Cn−2 = ∂C+

n−1 so Cn−2 is the boundary of an antipodally symmetric
(n− 1)-chain.

Now assume, as an inductive hypothesis, that Ck is the boundary of an
antipodally symmetric (k+1)-chain Dk+1. We can write Dk+1 = Ek+1+E ′

k+1

with Ek+1 antipodal to E ′
k+1 (from each pair σ, −σ in Dk+1, put one in Ek+1

and the other in E ′
k+1). Now Ck = C+

k + C−
k = ∂Ek+1 + ∂E ′

k+1 and so
C+

k + ∂Ek+1 = C−
k + ∂E ′

k+1, but C+
k and C−

k are antipodal, as are ∂Ek+1 and
∂E ′

k+1, so C+
k + ∂Ek+1 is antipodally symmetric. Also,

∂(C+
k + ∂Ek+1) = ∂C+

k + ∂∂Ek+1 = Ck−1 + 0.
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Hence C0 is the boundary of a symmetric 1-chain which implies that it
consists of an even number of pairs of antipodal points. But it is also φ0A0

and so consists of exactly one pair of antipodal points, a contradiction.
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